官方提供了83个代码段,以介绍使用Go所需要用到的语法和概念。
第一部分介绍基本的语法和数据结构;
第二部分讨论方法和接口;
第三部分介绍Go的并发原语。
可以通过以下方式在本地离线学习,离线使用时所有代码样例均在你的机器上编译和运行,所以速度会更快:
请先在本地
安装 Go 然后使用go get
命令安装 gotour-zh:
go get github.com/Go-zh/tour/gotour
然后运行得到的 gotour 程序就可以了(./gotour是Mac系统或linux系统执行程序的方式,在windows系统下你可以在自己设置的 GOPATH工作目录下的bin文件夹内找到它):
cd $GOPATH/bin
./gotour
如果不想安装编辑器,可以前往 官方提供的在线编辑器(自备梯子)
Hello, 世界#
package main
import "fmt"
func main() {
fmt.Println("Hello, 世界")
}
包#
package main
import (
"fmt"
"math/rand"
)
func main() {
fmt.Println("My favorite number is", rand.Intn(10))
}
每个 Go 程序都是由包组成的。
程序运行的入口是包 main 。
这个程序使用并导入了包 “fmt” 和 “math/rand” 。
按照惯例,包名与导入路径的最后一个目录一致。例如,“math/rand” 包由 package rand 语句开始。
注意:这个程序的运行环境是确定性的,因此 rand.Intn 每次都会返回相同的数字。 (为了得到不同的随机数,需要提供一个随机数种子,参阅 rand.Seed。)
导入#
package main
import (
"fmt"
"math"
)
func main() {
fmt.Printf("Now you have %g problems.", math.Sqrt(7))
}
这个代码用圆括号组合了导入,这是“打包”导入语句。
同样可以编写多个导入语句,例如:
import "fmt"
import "math"
不过使用打包的导入语句是更好的形式。
导出名#
package main
import (
"fmt"
"math"
)
func main() {
fmt.Println(math.pi)
}
在 Go 中,首字母大写的名称是被导出的。
在导入包之后,你只能访问包所导出的名字,任何未导出的名字是不能被包外的代码访问的。
Foo 和 FOO 都是被导出的名称。名称 foo 是不会被导出的。
执行代码,注意编译器报的错误。
然后将 math.pi 改名为 math.Pi 再试着执行一下。
函数#
package main
import "fmt"
func add(x int, y int) int {
return x + y
}
func main() {
fmt.Println(add(42, 13))
}
函数可以没有参数或接受多个参数。
在这个例子中, add 接受两个 int 类型的参数。
注意类型在变量名 之后 。
(参考 这篇关于 Go 语法定义了解类型以这种形式出现的原因。)
函数(续)#
package main
import "fmt"
func add(x, y int) int {
return x + y
}
func main() {
fmt.Println(add(42, 13))
}
当两个或多个连续的函数命名参数是同一类型,则除了最后一个类型之外,其他都可以省略。
在这个例子中 ,
x int, y int
被缩写为
x, y int
多值返回#
package main
import "fmt"
func swap(x, y string) (string, string) {
return y, x
}
func main() {
a, b := swap("hello", "world")
fmt.Println(a, b)
}
函数可以返回任意数量的返回值。
swap 函数返回了两个字符串。
命名返回值#
package main
import "fmt"
func split(sum int) (x, y int) {
x = sum * 4 / 9
y = sum - x
return
}
func main() {
fmt.Println(split(17))
}
Go 的返回值可以被命名,并且就像在函数体开头声明的变量那样使用。
返回值的名称应当具有一定的意义,可以作为文档使用。
没有参数的 return 语句返回各个返回变量的当前值。这种用法被称作“裸”返回。
直接返回语句仅应当用在像下面这样的短函数中。在长的函数中它们会影响代码的可读性
变量#
package main
import "fmt"
var c, python, java bool
func main() {
var i int
fmt.Println(i, c, python, java)
}
var 语句定义了一个变量的列表;跟函数的参数列表一样,类型在后面。
就像在这个例子中看到的一样, var 语句可以定义在包或函数级别
初始化变量#
package main
import "fmt"
var i, j int = 1, 2
func main() {
var c, python, java = true, false, "no!"
fmt.Println(i, j, c, python, java)
}
变量定义可以包含初始值,每个变量对应一个。
如果初始化是使用表达式,则可以省略类型;变量从初始值中获得类型。
短声明变量#
package main
import "fmt"
func main() {
var i, j int = 1, 2
k := 3
c, python, java := true, false, "no!"
fmt.Println(i, j, k, c, python, java)
}
在函数中, :=
简洁赋值语句在明确类型的地方,可以用于替代 var
定义。
函数外的每个语句都必须以关键字开始( var 、 func 、等等), :=
结构不能使用在函数外。
基本类型#
package main
import (
"fmt"
"math/cmplx"
)
var (
ToBe bool = false
MaxInt uint64 = 1<<64 - 1
z complex128 = cmplx.Sqrt(-5 + 12i)
)
func main() {
const f = "%T(%v)\\n"
fmt.Printf(f, ToBe, ToBe)
fmt.Printf(f, MaxInt, MaxInt)
fmt.Printf(f, z, z)
}
Go 有以下几种基本类型 Basic types
bool
string
int int8 int16 int32 int64
uint uint8 uint16 uint32 uint64 uintptr
byte // uint8 的别名
rune // int32 的别名
// 代表一个Unicode码
float32 float64
complex64 complex128
这个例子演示了具有不同类型的变量。 同时与导入语句一样,变量的定义“打包”在一个语法块中。
int,uint 和 uintptr 类型在32位的系统上一般是32位,而在64位系统上是64位。当你需要使用一个整数类型时,你应该首选 int,仅当有特别的理由才使用定长整数类型或者无符号整数类型。
零值#
package main
import "fmt"
func main() {
var i int
var f float64
var b bool
var s string
fmt.Printf("%v %v %v %q\n", i, f, b, s)
}
变量在定义时没有明确的初始化时会赋值为 零值 。
零值是:
- 数值类型为 0 ,
- 布尔类型为 false ,
- 字符串为 "" (空字符串)。
类型转换#
package main
import (
"fmt"
"math"
)
func main() {
var x, y int = 3, 4
var f float64 = math.Sqrt(float64(x*x + y*y))
var z uint = uint(f)
fmt.Println(x, y, z)
}
表达式 T(v)
将值 v
转换为类型 T
。
一些关于数值的转换:
var i int = 42
var f float64 = float64(i)
var u uint = uint(f)
或者,更加简单的形式:
i := 42
f := float64(i)
u := uint(f)
与 C 不同的是 Go 的在不同类型之间的项目赋值时需要显式转换。 试着移除例子中 float64 或 int 的转换看看会发生什么。
类型推导#
package main
import "fmt"
func main() {
v := 42 // change me!
fmt.Printf("v is of type %T\n", v)
}
在定义一个变量却并不显式指定其类型时(使用 :=
语法或者 var =
表达式语法), 变量的类型由(等号)右侧的值推导得出。
当右值定义了类型时,新变量的类型与其相同:
var i int
j := i // j 也是一个 int
但是当右边包含了未指名类型的数字常量时,新的变量就可能是 int 、 float64 或 complex128 。 这取决于常量的精度:
i := 42 // int
f := 3.142 // float64
g := 0.867 + 0.5i // complex128
尝试修改演示代码中 v 的初始值,并观察这是如何影响其类型的。
常量#
package main
import "fmt"
const Pi = 3.14
func main() {
const World = "世界"
fmt.Println("Hello", World)
fmt.Println("Happy", Pi, "Day")
const Truth = true
fmt.Println("Go rules?", Truth)
}
常量的定义与变量类似,只不过使用 const
关键字。
常量可以是字符、字符串、布尔或数字类型的值。
常量不能使用 :=
语法定义。
数值常量#
package main
import "fmt"
const (
Big = 1 << 100
Small = Big >> 99
)
func needInt(x int) int { return x * 10 + 1 }
func needFloat(x float64) float64 {
return x * 0.1
}
func main() {
fmt.Println(needInt(Small))
fmt.Println(needFloat(Small))
fmt.Println(needFloat(Big))
}
数值常量是高精度的 值 。
一个未指定类型的常量由上下文来决定其类型。
也尝试一下输出 needInt(Big)
吧。
(int
可以存放最大64位的整数,根据平台不同有时会更少。)
for#
package main
import "fmt"
func main() {
sum := 0
for i := 0; i < 10; i++ {
sum += i
}
fmt.Println(sum)
}
Go 只有一种循环结构—— for 循环。
基本的 for
循环包含三个由分号分开的组成部分:
- 初始化语句:在第一次循环执行前被执行
- 循环条件表达式:每轮迭代开始前被求值
- 后置语句:每轮迭代后被执行
初始化语句一般是一个短变量声明,这里声明的变量仅在整个 for
循环语句可见。
如果条件表达式的值变为 false,那么迭代将终止。
注意:不像 C,Java,或者 Javascript 等其他语言,for 语句的三个组成部分 并不需要用括号括起来,但循环体必须用 { } 括起来。
for(续)#
package main
import "fmt"
func main() {
sum := 1
for ; sum < 1000; {
sum += sum
}
fmt.Println(sum)
}
循环初始化语句和后置语句都是可选的。
for
是 Go 的 “while”#
package main
import "fmt"
func main() {
sum := 1
for sum < 1000 {
sum += sum
}
fmt.Println(sum)
}
C 的 while
在 Go 中叫做 for
。
死循环#
package main
func main() {
for {
}
}
如果省略了循环条件,循环就不会结束,因此可以用更简洁地形式表达死循环。
if#
package main
import (
"fmt"
"math"
)
func sqrt(x float64) string {
if x < 0 {
return sqrt(-x) + "i"
}
return fmt.Sprint(math.Sqrt(x))
}
func main() {
fmt.Println(sqrt(2), sqrt(-4))
}
就像 for
循环一样,Go 的 if
语句也不要求用 ( )
将条件括起来,同时, { }
还是必须有的。
if 的便捷语句#
package main
import (
"fmt"
"math"
)
func pow(x, n, lim float64) float64 {
if v := math.Pow(x, n); v < lim {
return v
}
return lim
}
func main() {
fmt.Println(
pow(3, 2, 10),
pow(3, 3, 20),
)
}
跟 for
一样, if
语句可以在条件之前执行一个简单语句。
由这个语句定义的变量的作用域仅在 if
范围之内。
(在最后的 return
语句处使用 v 看看。)
if 和 else#
package main
import (
"fmt"
"math"
)
func pow(x, n, lim float64) float64 {
if v := math.Pow(x, n); v < lim {
return v
} else {
fmt.Printf("%g >= %g\n", v, lim)
}
// 这里开始就不能使用 v 了
return lim
}
func main() {
fmt.Println(
pow(3, 2, 10),
pow(3, 3, 20),
)
}
在 if
的便捷语句定义的变量同样可以在任何对应的 else
块中使用。
(提示:两个 pow 调用都在 main 调用 fmt.Println
前执行完毕了。)
练习:循环和函数#
package main
import (
"fmt"
)
func Sqrt(x float64) float64 {
}
func main() {
fmt.Println(Sqrt(2))
}
作为练习函数和循环的简单途径,用牛顿法实现开方函数。
在这个例子中,牛顿法是通过选择一个初始点 z 然后重复这一过程求 Sqrt(x) 的近似值:
为了做到这个,只需要重复计算 10 次,并且观察不同的值(1,2,3,……)是如何逐步逼近结果的。 然后,修改循环条件,使得当值停止改变(或改变非常小)的时候退出循环。观察迭代次数是否变化。结果与 math.Sqrt 接近吗?
提示:定义并初始化一个浮点值,向其提供一个浮点语法或使用转换:
z := float64(1)
z := 1.0
switch#
package main
import (
"fmt"
"runtime"
)
func main() {
fmt.Print("Go runs on ")
switch os := runtime.GOOS; os {
case "darwin":
fmt.Println("OS X.")
case "linux":
fmt.Println("Linux.")
default:
// freebsd, openbsd,
// plan9, windows...
fmt.Printf("%s.", os)
}
}
你可能已经知道 switch
语句会长什么样了。
除非以 fallthrough 语句结束,否则分支会自动终止。
switch 的执行顺序#
package main
import (
"fmt"
"time"
)
func main() {
fmt.Println("When's Saturday?")
today := time.Now().Weekday()
switch time.Saturday {
case today + 0:
fmt.Println("Today.")
case today + 1:
fmt.Println("Tomorrow.")
case today + 2:
fmt.Println("In two days.")
default:
fmt.Println("Too far away.")
}
}
switch
的条件从上到下的执行,当匹配成功的时候停止。
(例如,
switch i {
case 0:
case f():
}
当 i==0
时不会调用 f 。)
没有条件的 switch#
package main
import (
"fmt"
"time"
)
func main() {
t := time.Now()
switch {
case t.Hour() < 12:
fmt.Println("Good morning!")
case t.Hour() < 17:
fmt.Println("Good afternoon.")
default:
fmt.Println("Good evening.")
}
}
没有条件的 switch
同 switch true
一样。
这一构造使得可以用更清晰的形式来编写长的 if-then-else
链。
defer#
package main
import "fmt"
func main() {
defer fmt.Println("world")
fmt.Println("hello")
}
defer
语句会延迟函数的执行直到上层函数返回。
延迟调用的参数会立刻生成,但是在上层函数返回前函数都不会被调用。
defer 栈#
package main
import "fmt"
func main() {
fmt.Println("counting")
for i := 0; i < 10; i++ {
defer fmt.Println(i)
}
fmt.Println("done")
}
延迟的函数调用被压入一个栈中。当函数返回时, 会按照后进先出的顺序调用被延迟的函数调用。
指针#
package main
import "fmt"
func main() {
i, j := 42, 2701
p := &i // point to i
fmt.Println(*p) // read i through the pointer
*p = 21 // set i through the pointer
fmt.Println(i) // see the new value of i
p = &j // point to j
*p = *p / 37 // divide j through the pointer
fmt.Println(j) // see the new value of j
}
Go 具有指针。 指针保存了变量的内存地址。
类型 *T
是指向类型 T
的值的指针。其零值是 nil
。
var p *int
& 符号会生成一个指向其作用对象的指针。
i := 42
p = &i
* 符号表示指针指向的底层的值。
fmt.Println(*p) // 通过指针 p 读取 i
*p = 21 // 通过指针 p 设置 i
这也就是通常所说的“间接引用”或“非直接引用”。
与 C 不同,Go 没有指针运算。
结构体#
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
fmt.Println(Vertex{1, 2})
}
一个结构体( struct )就是一个字段的集合。
(而 type 的含义跟其字面意思相符。)
结构体字段#
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
v.X = 4
fmt.Println(v.X)
}
结构体字段使用点号来访问。
结构体指针#
package main
import "fmt"
type Vertex struct {
X int
Y int
}
func main() {
v := Vertex{1, 2}
p := &v
p.X = 1e9
fmt.Println(v)
}
结构体字段可以通过结构体指针来访问。
通过指针间接的访问是透明的。
结构体文法#
package main
import "fmt"
type Vertex struct {
X, Y int
}
var (
v1 = Vertex{1, 2} // 类型为 Vertex
v2 = Vertex{X: 1} // Y:0 被省略
v3 = Vertex{} // X:0 和 Y:0
p = &Vertex{1, 2} // 类型为 *Vertex
)
func main() {
fmt.Println(v1, p, v2, v3)
}
结构体文法表示通过结构体字段的值作为列表来新分配一个结构体。
使用 Name: 语法可以仅列出部分字段。(字段名的顺序无关。)
特殊的前缀 &
返回一个指向结构体的指针
数组#
package main
import "fmt"
func main() {
var a [2]string
a[0] = "Hello"
a[1] = "World"
fmt.Println(a[0], a[1])
fmt.Println(a)
}
类型 [n]T
是一个有 n 个类型为 T 的值的数组。
表达式
var a [10]int
定义变量 a 是一个有十个整数的数组。
数组的长度是其类型的一部分,因此数组不能改变大小。 这看起来是一个制约,但是请不要担心; Go 提供了更加便利的方式来使用数组。
slice#
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
fmt.Println("s ==", s)
for i := 0; i < len(s); i++ {
fmt.Printf("s[%d] == %d\n", i, s[i])
}
}
一个 slice 会指向一个序列的值,并且包含了长度信息。
[]T
是一个元素类型为 T 的 slice。
len(s)
返回 slice s 的长度。
slice 的 slice#
package main
import (
"fmt"
"strings"
)
func main() {
// Create a tic-tac-toe board.
game := [][]string{
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
[]string{"_", "_", "_"},
}
// The players take turns.
game[0][0] = "X"
game[2][2] = "O"
game[2][0] = "X"
game[1][0] = "O"
game[0][2] = "X"
printBoard(game)
}
slice 可以包含任意的类型,包括另一个 slice。
对 slice 切片#
package main
import "fmt"
func main() {
s := []int{2, 3, 5, 7, 11, 13}
fmt.Println("s ==", s)
fmt.Println("s[1:4] ==", s[1:4])
// 省略下标代表从 0 开始
fmt.Println("s[:3] ==", s[:3])
// 省略上标代表到 len(s) 结束
fmt.Println("s[4:] ==", s[4:])
}
slice 可以重新切片,创建一个新的 slice 值指向相同的数组。
表达式
s[lo:hi]
表示从 lo 到 hi-1 的 slice 元素,含前端,不包含后端。因此
s[lo:lo]
是空的,而
s[lo:lo+1]
有一个元素。
构造 slice#
package main
import "fmt"
func main() {
a := make([]int, 5)
printSlice("a", a)
b := make([]int, 0, 5)
printSlice("b", b)
c := b[:2]
printSlice("c", c)
d := c[2:5]
printSlice("d", d)
}
func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n",
s, len(x), cap(x), x)
}
slice 由函数 make 创建。这会分配一个全是零值的数组并且返回一个 slice 指向这个数组:
a := make([]int, 5) // len(a)=5
为了指定容量,可传递第三个参数到 make:
b := make([]int, 0, 5) // len(b)=0, cap(b)=5
b = b[:cap(b)] // len(b)=5, cap(b)=5
b = b[1:] // len(b)=4, cap(b)=4
nil slice#
package main
import "fmt"
func main() {
var z []int
fmt.Println(z, len(z), cap(z))
if z == nil {
fmt.Println("nil!")
}
}
slice 的零值是 nil 。
一个 nil 的 slice 的长度和容量是 0。
向 slice 添加元素#
package main
import "fmt"
func main() {
var a []int
printSlice("a", a)
// append works on nil slices.
a = append(a, 0)
printSlice("a", a)
// the slice grows as needed.
a = append(a, 1)
printSlice("a", a)
// we can add more than one element at a time.
a = append(a, 2, 3, 4)
printSlice("a", a)
}
func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n",
s, len(x), cap(x), x)
}
向 slice 的末尾添加元素是一种常见的操作,因此 Go 提供了一个内建函数 append
。 内建函数的文档对 append
有详细介绍。
func append(s []T, vs ...T) []T
append
的第一个参数 s 是一个元素类型为 T 的 slice ,其余类型为 T 的值将会附加到该 slice 的末尾。
append
的结果是一个包含原 slice 所有元素加上新添加的元素的 slice。
如果 s 的底层数组太小,而不能容纳所有值时,会分配一个更大的数组。 返回的 slice 会指向这个新分配的数组。
(了解更多关于 slice 的内容,参阅文章 Go 切片:用法和本质。)
range#
package main
import "fmt"
var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)
}
}
for
循环的 range
格式可以对 slice 或者 map 进行迭代循环。
当使用 for
循环遍历一个 slice 时,每次迭代 range
将返回两个值。 第一个是当前下标(序号),第二个是该下标所对应元素的一个拷贝。
range(续)#
package main
import "fmt"
func main() {
pow := make([]int, 10)
for i := range pow {
pow[i] = 1 << uint(i)
}
for _, value := range pow {
fmt.Printf("%d\n", value)
}
}
可以通过赋值给 _
来忽略序号和值。
如果只需要索引值,去掉 “ , value ” 的部分即可。
练习:slice#
package main
import "golang.org/x/tour/pic"
func Pic(dx, dy int) [][]uint8 {
}
func main() {
pic.Show(Pic)
}
实现 Pic 。它返回一个长度为 dy 的 slice,其中每个元素是一个长度为 dx 且元素类型为8位无符号整数的 slice。当你运行这个程序时, 它会将每个整数作为对应像素的灰度值(好吧,其实是蓝度)并显示这个 slice 所对应的图像。
计算每个像素的灰度值的方法由你决定;几个有意思的选择包括 (x+y)/2、x*y 和 x^y 。
(需要使用循环来分配 [][]uint8
中的每个 []uint8
。)
(使用 uint8(intValue)
来在类型之间进行转换。)
map#
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m map[string]Vertex
func main() {
m = make(map[string]Vertex)
m["Bell Labs"] = Vertex{
40.68433, -74.39967,
}
fmt.Println(m["Bell Labs"])
}
map
映射键到值。
map
在使用之前必须用 make
来创建;值为 nil 的 map 是空的,并且不能对其赋值。
map 的文法#
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": Vertex{
40.68433, -74.39967,
},
"Google": Vertex{
37.42202, -122.08408,
},
}
func main() {
fmt.Println(m)
}
map 的文法跟结构体文法相似,不过必须有键名。
map 的文法(续)#
package main
import "fmt"
type Vertex struct {
Lat, Long float64
}
var m = map[string]Vertex{
"Bell Labs": {40.68433, -74.39967},
"Google": {37.42202, -122.08408},
}
func main() {
fmt.Println(m)
}
若顶级类型只是一个类型名,你可以在文法的元素中省略它。
修改 map#
package main
import "fmt"
func main() {
m := make(map[string]int)
m["Answer"] = 42
fmt.Println("The value:", m["Answer"])
m["Answer"] = 48
fmt.Println("The value:", m["Answer"])
delete(m, "Answer")
fmt.Println("The value:", m["Answer"])
v, ok := m["Answer"]
fmt.Println("The value:", v, "Present?", ok)
}
在 map m
中插入或修改一个元素:
m[key] = elem
获得元素:
elem = m[key]
删除元素:
delete(m, key)
通过双赋值检测某个键存在:
elem, ok = m[key]
如果 key 在 m 中, ok 为 true。否则, ok 为 false,并且 elem 是 map 的元素类型的零值。
同样的,当从 map 中读取某个不存在的键时,结果是 map 的元素类型的零值。
练习:map#
package main
import (
"golang.org/x/tour/wc"
)
func WordCount(s string) map[string]int {
return map[string]int{"x": 1}
}
func main() {
wc.Test(WordCount)
}
实现 WordCount。它应当返回一个含有 s 中每个 “词” 个数的 map。函数 wc.Test 针对这个函数执行一个测试用例,并输出成功还是失败。
函数值#
package main
import (
"fmt"
"math"
)
func compute(fn func(float64, float64) float64) float64 {
return fn(3, 4)
}
func main() {
hypot := func(x, y float64) float64 {
return math.Sqrt(x * x + y * y)
}
fmt.Println(hypot(5, 12))
fmt.Println(compute(hypot))
fmt.Println(compute(math.Pow))
}
函数也是值。他们可以像其他值一样传递,比如,函数值可以作为函数的参数或者返回值。
函数的闭包#
package main
import "fmt"
func adder() func(int) int {
sum := 0
return func(x int) int {
sum += x
return sum
}
}
func main() {
pos, neg := adder(), adder()
for i := 0; i < 10; i++ {
fmt.Println(
pos(i),
neg(-2 * i),
)
}
}
Go 函数可以是一个闭包。闭包是一个函数值,它引用了函数体之外的变量。 这个函数可以对这个引用的变量进行访问和赋值;换句话说这个函数被“绑定”在这个变量上。
例如,函数 adder 返回一个闭包。每个返回的闭包都被绑定到其各自的 sum 变量上。
练习:斐波纳契闭包#
package main
import "fmt"
// fibonacci 函数会返回一个返回 int 的函数。
func fibonacci() func() int {
}
func main() {
f := fibonacci()
for i := 0; i < 10; i++ {
fmt.Println(f())
}
}
现在来通过函数做些有趣的事情。
实现一个 fibonacci 函数,返回一个函数(一个闭包)可以返回连续的斐波纳契数。
方法#
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X * v.X + v.Y * v.Y)
}
func main() {
v := &Vertex{3, 4}
fmt.Println(v.Abs())
}
Go 没有类。然而,仍然可以在结构体类型上定义方法。
方法接收者 出现在 func 关键字和方法名之间的参数中。
方法(续)#
package main
import (
"fmt"
"math"
)
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
func main() {
f := MyFloat(-math.Sqrt2)
fmt.Println(f.Abs())
}
你可以对包中的 任意 类型定义任意方法,而不仅仅是针对结构体。
但是,不能对来自其他包的类型或基础类型定义方法。
接收者为指针的方法#
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X * v.X + v.Y * v.Y)
}
func main() {
v := &Vertex{3, 4}
fmt.Printf("Before scaling: %v, Abs: %v\n", v, v.Abs())
v.Scale(5)
fmt.Printf("After scaling: %v, Abs: %v\n", v, v.Abs())
}
方法可以与命名类型或命名类型的指针关联。
刚刚看到的两个 Abs 方法。一个是在 *Vertex 指针类型上,而另一个在 MyFloat 值类型上。 有两个原因需要使用指针接收者。首先避免在每个方法调用中拷贝值(如果值类型是大的结构体的话会更有效率)。其次,方法可以修改接收者指向的值。
尝试修改 Abs 的定义,同时 Scale 方法使用 Vertex 代替 *Vertex 作为接收者。
当 v 是 Vertex 的时候 Scale 方法没有任何作用。Scale 修改 v。当 v 是一个值(非指针),方法看到的是 Vertex 的副本,并且无法修改原始值。
Abs 的工作方式是一样的。只不过,仅仅读取 v。所以读取的是原始值(通过指针)还是那个值的副本并没有关系。
接口#
package main
import (
"fmt"
"math"
)
type Abser interface {
Abs() float64
}
func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}
a = f // a MyFloat 实现了 Abser
a = &v // a *Vertex 实现了 Abser
// 下面一行,v 是一个 Vertex(而不是 *Vertex)
// 所以没有实现 Abser。
a = v
fmt.Println(a.Abs())
}
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X * v.X + v.Y * v.Y)
}
接口类型是由一组方法定义的集合。
接口类型的值可以存放实现这些方法的任何值。
注意: 示例代码的 22 行存在一个错误。 由于 Abs 只定义在 *Vertex(指针类型)上, 所以 Vertex(值类型)不满足 Abser。
隐式接口#
package main
import (
"fmt"
"os"
)
type Reader interface {
Read(b []byte) (n int, err error)
}
type Writer interface {
Write(b []byte) (n int, err error)
}
type ReadWriter interface {
Reader
Writer
}
func main() {
var w Writer
// os.Stdout 实现了 Writer
w = os.Stdout
fmt.Fprintf(w, "hello, writer\n")
}
类型通过实现那些方法来实现接口。 没有显式声明的必要;所以也就没有关键字“implements“。
隐式接口解藕了实现接口的包和定义接口的包:互不依赖。
因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义。
包 io
定义了 Reader 和 Writer;其实不一定要这么做。
Stringers#
package main
import "fmt"
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}
func main() {
a := Person{"Arthur Dent", 42}
z := Person{"Zaphod Beeblebrox", 9001}
fmt.Println(a, z)
}
一个普遍存在的接口是 fmt
包中定义的 Stringer。
type Stringer interface {
String() string
}
Stringer 是一个可以用字符串描述自己的类型。fmt
包 (还有许多其他包)使用这个来进行输出。
练习:Stringers#
package main
import "fmt"
type IPAddr [4]byte
// TODO: Add a "String() string" method to IPAddr.
func main() {
addrs := map[string]IPAddr{
"loopback": {127, 0, 0, 1},
"googleDNS": {8, 8, 8, 8},
}
for n, a := range addrs {
fmt.Printf("%v: %v\n", n, a)
}
}
让 IPAddr 类型实现 fmt.Stringer
以便用点分格式输出地址。
例如,IPAddr{1, 2, 3, 4} 应当输出 “1.2.3.4”。
错误#
package main
import (
"fmt"
"time"
)
type MyError struct {
When time.Time
What string
}
func (e *MyError) Error() string {
return fmt.Sprintf("at %v, %s",
e.When, e.What)
}
func run() error {
return &MyError{
time.Now(),
"it didn't work",
}
}
func main() {
if err := run(); err != nil {
fmt.Println(err)
}
}
Go 程序使用 error
值来表示错误状态。
与 fmt.Stringer
类似, error
类型是一个内建接口:
type error interface {
Error() string
}
(与 fmt.Stringer
类似,fmt
包在输出时也会试图匹配 error
。)
通常函数会返回一个 error 值,调用的它的代码应当判断这个错误是否等于 nil, 来进行错误处理。
i, err := strconv.Atoi("42")
if err != nil {
fmt.Printf("couldn't convert number: %v\n", err)
return
}
fmt.Println("Converted integer:", i)
error
为 nil
时表示成功;非 nil
的 error
表示错误。
练习:错误#
package main
import (
"fmt"
)
func Sqrt(x float64) (float64, error) {
return 0, nil
}
func main() {
fmt.Println(Sqrt(2))
fmt.Println(Sqrt(-2))
}
从先前的练习中复制 Sqrt 函数,并修改使其返回 error 值。
由于不支持复数,当 Sqrt 接收到一个负数时,应当返回一个非 nil 的错误值。
创建一个新类型
type ErrNegativeSqrt float64
为其实现
func (e ErrNegativeSqrt) Error() string
使其成为一个 error, 该方法就可以让 ErrNegativeSqrt(-2).Error()
返回 "cannot Sqrt negative number: -2"
。
注意: 在 Error 方法内调用 fmt.Sprint(e) 将会让程序陷入死循环。可以通过先转换 e 来避免这个问题:fmt.Sprint(float64(e))
。请思考这是为什么呢?
修改 Sqrt 函数,使其接受一个负数时,返回 ErrNegativeSqrt 值。
Readers#
package main
import (
"fmt"
"io"
"strings"
)
func main() {
r := strings.NewReader("Hello, Reader!")
b := make([]byte, 8)
for {
n, err := r.Read(b)
fmt.Printf("n = %v err = %v b = %v\n", n, err, b)
fmt.Printf("b[:n] = %q\n", b[:n])
if err == io.EOF {
break
}
}
}
io
包指定了 io.Reader
接口, 它表示从数据流结尾读取。
Go 标准库包含了这个接口的许多实现, 包括文件、网络连接、压缩、加密等等。
io.Reader
接口有一个 Read
方法:
func (T) Read(b []byte) (n int, err error)
Read 用数据填充指定的字节 slice,并且返回填充的字节数和错误信息。 在遇到数据流结尾时,返回 io.EOF 错误。
例子代码创建了一个 strings.Reader。 并且以每次 8 字节的速度读取它的输出。
练习:Reader#
package main
import "golang.org/x/tour/reader"
type MyReader struct{}
// TODO: Add a Read(\[\]byte) (int, error) method to MyReader.
func main() {
reader.Validate(MyReader{})
}
实现一个 Reader 类型,它不断生成 ASCII 字符 ‘A’ 的流。
练习:rot13Reader#
package main
import (
"io"
"os"
"strings"
)
type rot13Reader struct {
r io.Reader
}
func main() {
s := strings.NewReader("Lbh penpxrq gur pbqr!")
r := rot13Reader{s}
io.Copy(os.Stdout, &r)
}
一个常见模式是 io.Reader
包裹另一个 io.Reader
,然后通过某种形式修改数据流。
例如,gzip.NewReader
函数接受 io.Reader
(压缩的数据流)并且返回同样实现了 io.Reader
的 *gzip.Reader
(解压缩后的数据流)。
编写一个实现了 io.Reader
的 rot13Reader
, 并从一个 io.Reader
读取, 利用 rot13
代换密码对数据流进行修改。
已经帮你构造了 rot13Reader
类型。 通过实现 Read
方法使其匹配 io.Reader
。
Web 服务器#
package main
import (
"fmt"
"log"
"net/http"
)
type Hello struct{}
func (h Hello) ServeHTTP(
w http.ResponseWriter,
r *http.Request) {
fmt.Fprint(w, "Hello!")
}
func main() {
var h Hello
err := http.ListenAndServe("localhost:4000", h)
if err != nil {
log.Fatal(err)
}
}
包 http
通过任何实现了 http.Handler
的值来响应 HTTP 请求:
package http
type Handler interface {
ServeHTTP(w ResponseWriter, r *Request)
}
在这个例子中,类型 Hello
实现了 http.Handler
。
访问 http://localhost:4000/
会看到来自程序的问候。
练习:HTTP 处理#
package main
import (
"log"
"net/http"
)
func main() {
// your http.Handle calls here
log.Fatal(http.ListenAndServe("localhost:4000", nil))
}
实现下面的类型,并在其上定义 ServeHTTP
方法。在 web 服务器中注册它们来处理指定的路径。
type String string
type Struct struct {
Greeting string
Punct string
Who string
}
例如,可以使用如下方式注册处理方法:
http.Handle("/string", String("I'm a frayed knot."))
http.Handle("/struct", &Struct{"Hello", ":", "Gophers!"})
在启动你的 http 服务器后,你将能够访问: http://localhost:4000/string
和 http://localhost:4000/struct
.
图片#
package main
import (
"fmt"
"image"
)
func main() {
m := image.NewRGBA(image.Rect(0, 0, 100, 100))
fmt.Println(m.Bounds())
fmt.Println(m.At(0, 0).RGBA())
}
Package image 定义了 Image 接口:
package image
type Image interface {
ColorModel() color.Model
Bounds() Rectangle
At(x, y int) color.Color
}
注意:Bounds 方法的 Rectangle 返回值实际上是一个 image.Rectangle, 其定义在 image 包中。
color.Color 和 color.Model 也是接口,但是通常因为直接使用预定义的实现 image.RGBA 和 image.RGBAModel 而被忽视了。这些接口和类型由image/color 包定义。
练习:图片#
package main
import "golang.org/x/tour/pic"
type Image struct{}
func main() {
m := Image{}
pic.ShowImage(m)
}
还记得之前编写的图片生成器吗?现在来另外编写一个,不过这次将会返回 image.Image 来代替 slice 的数据。
自定义的 Image 类型,要实现必要的方法,并且调用 pic.ShowImage。
Bounds 应当返回一个 image.Rectangle,例如 image.Rect(0, 0, w, h)
。
ColorModel 应当返回 color.RGBAModel。
At 应当返回一个颜色;在这个例子里,在最后一个图片生成器的值 v 匹配 `color.RGBA{v, v, 255, 255}`
goroutine#
package main
import (
"fmt"
"time"
)
func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep(100 * time.Millisecond)
fmt.Println(s)
}
}
func main() {
go say("world")
say("hello")
}
goroutine 是由 Go 运行时环境管理的轻量级线程。
go f(x, y, z)
开启一个新的 goroutine 执行
f(x, y, z)
f,x,y 和 z 是当前 goroutine 中定义的,但是在新的 goroutine 中运行 f。
goroutine 在相同的地址空间中运行,因此访问共享内存必须进行同步。sync 提供了这种可能,不过在 Go 中并不经常用到,因为有其他的办法。(在接下来的内容中会涉及到。)
channel#
package main
import "fmt"
func sum(a []int, c chan int) {
sum := 0
for _, v := range a {
sum += v
}
c <- sum // 将和送入 c
}
func main() {
a := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(a[:len(a)/2], c)
go sum(a[len(a)/2:], c)
x, y := <-c, <-c // 从 c 中获取
fmt.Println(x, y, x+y)
}
channel 是有类型的管道,可以用 channel 操作符 <-
对其发送或者接收值。
ch <- v // 将 v 送入 channel ch。
v := <-ch // 从 ch 接收,并且赋值给 v。
(“箭头”就是数据流的方向。)
和 map 与 slice 一样,channel 使用前必须创建:
ch := make(chan int)
默认情况下,在另一端准备好之前,发送和接收都会阻塞。这使得 goroutine 可以在没有明确的锁或竞态变量的情况下进行同步。
缓冲 channel#
package main
import "fmt"
func main() {
ch := make(chan int, 2)
ch <- 1
ch <- 2
fmt.Println(<-ch)
fmt.Println(<-ch)
}
ch := make(chan int, 100)
向带缓冲的 channel 发送数据的时候,只有在缓冲区满的时候才会阻塞。 而当缓冲区为空的时候接收操作会阻塞。
修改例子使得缓冲区被填满,然后看看会发生什么。
range 和 close#
package main
import (
"fmt"
)
func fibonacci(n int, c chan int) {
x, y := 0, 1
for i := 0; i < n; i++ {
c <- x
x, y = y, x+y
}
close(c)
}
func main() {
c := make(chan int, 10)
go fibonacci(cap(c), c)
for i := range c {
fmt.Println(i)
}
}
range 和 close 发送者可以 close 一个 channel 来表示再没有值会被发送了。接收者可以通过赋值语句的第二参数来测试 channel 是否被关闭:当没有值可以接收并且 channel 已经被关闭,那么经过
v, ok := <-ch
之后 ok 会被设置为 false。
循环 for i := range c
会不断从 channel 接收值,直到它被关闭。
注意: 只有发送者才能关闭 channel,而不是接收者。向一个已经关闭的 channel 发送数据会引起 panic。 还要注意: channel 与文件不同;通常情况下无需关闭它们。只有在需要告诉接收者没有更多的数据的时候才有必要进行关闭,例如中断一个 range。
select#
package main
import "fmt"
func fibonacci(c, quit chan int) {
x, y := 0, 1
for {
select {
case c <- x:
x, y = y, x+y
case <-quit:
fmt.Println("quit")
return
}
}
}
func main() {
c := make(chan int)
quit := make(chan int)
go func() {
for i := 0; i < 10; i++ {
fmt.Println(<-c)
}
quit <- 0
}()
fibonacci(c, quit)
}
select 语句使得一个 goroutine 在多个通讯操作上等待。
select 会阻塞,直到条件分支中的某个可以继续执行,这时就会执行那个条件分支。当多个都准备好的时候,会随机选择一个。
默认选择#
package main
import (
"fmt"
"time"
)
func main() {
tick := time.Tick(100 * time.Millisecond)
boom := time.After(500 * time.Millisecond)
for {
select {
case <-tick:
fmt.Println("tick.")
case <-boom:
fmt.Println("BOOM!")
return
default:
fmt.Println(" .")
time.Sleep(50 * time.Millisecond)
}
}
}
当 select 中的其他条件分支都没有准备好的时候,default 分支会被执行。
为了非阻塞的发送或者接收,可使用 default 分支:
select {
case i := <-c:
// 使用 i
default:
// 从 c 读取会阻塞
}
sync.Mutex#
package main
import (
"fmt"
"sync"
"time"
)
// SafeCounter 的并发使用是安全的。
type SafeCounter struct {
v map[string]int
mux sync.Mutex
}
// Inc 增加给定 key 的计数器的值。
func (c *SafeCounter) Inc(key string) {
c.mux.Lock()
// Lock 之后同一时刻只有一个 goroutine 能访问 c.v
c.v[key]++
c.mux.Unlock()
}
// Value 返回给定 key 的计数器的当前值。
func (c *SafeCounter) Value(key string) int {
c.mux.Lock()
// Lock 之后同一时刻只有一个 goroutine 能访问 c.v
defer c.mux.Unlock()
return c.v[key]
}
func main() {
c := SafeCounter{v: make(map[string]int)}
for i := 0; i < 1000; i++ {
go c.Inc("somekey")
}
time.Sleep(time.Second)
fmt.Println(c.Value("somekey"))
}
我们已经看到 channel 用来在各个 goroutine 间进行通信是非常合适的了。
但是如果我们并不需要通信呢?比如说,如果我们只是想保证在每个时刻,只有一个 goroutine 能访问一个共享的变量从而避免冲突?
这里涉及的概念叫做 互斥,通常使用 互斥锁(mutex) 来提供这个限制。
Go 标准库中提供了 sync.Mutex
类型及其两个方法:Lock Unlock
我们可以通过在代码前调用 Lock 方法,在代码后调用 Unlock 方法来保证一段代码的互斥执行。 参见 Inc 方法。
我们也可以用 defer 语句来保证互斥锁一定会被解锁。参见 Value 方法。
练习:Web 爬虫#
package main
import (
"fmt"
)
type Fetcher interface {
// Fetch 返回 URL 的 body 内容,并且将在这个页面上找到的 URL 放到一个 slice 中。
Fetch(url string) (body string, urls []string, err error)
}
// Crawl 使用 fetcher 从某个 URL 开始递归的爬取页面,直到达到最大深度。
func Crawl(url string, depth int, fetcher Fetcher) {
// TODO: 并行的抓取 URL。
// TODO: 不重复抓取页面。
// 下面并没有实现上面两种情况:
if depth <= 0 {
return
}
body, urls, err := fetcher.Fetch(url)
if err != nil {
fmt.Println(err)
return
}
fmt.Printf("found: %s %q\n", url, body)
for _, u := range urls {
Crawl(u, depth-1, fetcher)
}
return
}
func main() {
Crawl("http://golang.org/", 4, fetcher)
}
// fakeFetcher 是返回若干结果的 Fetcher。
type fakeFetcher map[string]*fakeResult
type fakeResult struct {
body string
urls []string
}
func (f fakeFetcher) Fetch(url string) (string, []string, error) {
if res, ok := f[url]; ok {
return res.body, res.urls, nil
}
return "", nil, fmt.Errorf("not found: %s", url)
}
// fetcher 是填充后的 fakeFetcher。
var fetcher = fakeFetcher{
"http://golang.org/": &fakeResult{
"The Go Programming Language",
[]string{
"http://golang.org/pkg/",
"http://golang.org/cmd/",
},
},
"http://golang.org/pkg/": &fakeResult{
"Packages",
[]string{
"http://golang.org/",
"http://golang.org/cmd/",
"http://golang.org/pkg/fmt/",
"http://golang.org/pkg/os/",
},
},
"http://golang.org/pkg/fmt/": &fakeResult{
"Package fmt",
[]string{
"http://golang.org/",
"http://golang.org/pkg/",
},
},
"http://golang.org/pkg/os/": &fakeResult{
"Package os",
[]string{
"http://golang.org/",
"http://golang.org/pkg/",
},
},
}
在这个练习中,将会使用 Go 的并发特性来并行执行 web 爬虫。
修改 Crawl 函数来并行的抓取 URLs,并且保证不重复。
提示:你可以用一个 map 来缓存已经获取的 URL,但是需要注意 map 本身并不是并发安全的!
祝贺你,官方教程已经全部学完了。